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Dependable Wireless Control System =

s Most of today’s industrial wireless
networks are for monitoring

T Dependable wireless control requires
# . Control performance
*  Resiliency

e *  Energy efficiency
pressure
Sensor
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Close the loop between control and network

Holistic controller manages both the physical plant and network
based on states of plants and the network

Network Configuration
Network <~ Network . ’ g

Manager‘i\ / Controller
\\ -0 t?,S?rvpir/States of Network

—

Reconfiguration

Performance Outputs
Signals

Measurements of Plant

Wireless /
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Ma,Y., Gunatilaka, D., Li, B., Gonzalez, H., & Lu, C. (2018). Holistic cyber-physical management for
dependable wireless control systems. ACM Transactions on Cyber-Physical Systems, 3(1), 3.
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Motivation

Traditional periodic control
O Low rate—> Low resiliency to interference
3 High rate> Unnecessary energy cost

—> Efficient rate-adaptation/event-triggered control

Time-slotted multi-hop mesh WSAN
A Lack of mechanism tailored for efficient control strategies

3 Run-time reconfiguration is challenging

Simulation tools are of vital importance for wireless control
a Real WSAN dynamics are hard to simulate

3 Running real industrial physical plant is extremely challenging
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Holistic control with efficient control strategies
O Rate adaptation
3 Self-triggered control

WSAN reconfiguration mechanisms
O Support run-time adaptation for efficient holistic control

3 Target multi-hop mesh network

Real-time network-in-the-loop simulator
0 Real WSAN testbed

3 Simulated physical plants and controllers

Compare rate adaptation and self-triggered control
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Efficient Holistic Control Framework oS>

Wireless Interference
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Physical Disturbance
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Actuators

—
>| Controller
t

Physwal State
Observer

Sensors

» Control performance monitoring

» Efficient control strategy—> Rate/Inter-transmission time

» Network reconfiguration mechanism
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Control Performance Monitoring

» Stability

x(t)

st s X

t t

» State error
Q ||x(t) — reference statel|

» Control performance index: Lyapunov function V(x(t))

Q V(x(t)) keeps decreasing > System is stable
Q Value of V(x(t)) = upper bound of physical state error

/ A

V(t)
x(t)

v
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Rate Adaptation

A

V(t)

Sampling rate

Increase threshold

--------------------------------------------- Decrease threshold
Sampling rate |,
>

t
» Simplified of the rate adaptation algorithm

If Increase threshold
— Sampling rate |
If Decrease threshold for a time interval

— Sampling rate |
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Self-triggered Control

Event trigger rule

O Stability index is specified by: S(t)

S(xt) = V(xtk—l )e_w(xtk—l ) (t—t—1)

V(t)

O ldeal Lyapunov function V(t) < S(t)
0 Trigger when V(t) = S(t)

Self triggered control

O Predict when the trigger condition will be violated based on model
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Low-power Wireless Bus (LWB)

Glossy flooding
O One to many

O Constructive interference

RVAWA
A oo - DA

\/ t \/ \/ t \/
O Radio event driven
O Fast (propagation delay < |0 ms in 100-node mesh network)

Low power wireless bus (LWB) network protocol

O Maps all communication on fast Glossy floods—> many to many

Ferrari, F, Zimmerling, M., Thiele, L., & Saukh, O. Efficient network flooding and time synchronization

with glossy. In IPSN, 201 1.
Ferrari, F, Zimmerling, M., Mottola, L., & Thiele, L. Low-power wireless bus. In Sensys, 2012.
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Advantages of LWB
Q Fast
O Topology independent

O Suitable for network-wide adaptation

Challenges of network design
O Support reconfiguration of whole communication schedules

O Recover from data loss during adaptation
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Rate Adaptation: Network Design

Network reconfiguration mechanism

O All nodes store global static schedule (max rate)
E.g. l fii | f1 | T3 J fio | o [ f31 [ l fii | f1 | T3
0 2T 3T

A

O Holistic controllers piggyback the updated rate with actuation
packet, and flood them in their assigned slot

1 1 1
f||: ; Hz f|23 E Hz f|3: E Hz

O Every node receives updated rates and calculates its schedule locally
using implicit scheduling (e.g., based on rate monotonic scheduling)

B8 fa[fr]faa]- - - Bl - Blfalfa] |- Bl - [l -
0 T 2T 3T 4T

t

All nodes sleep at unassigned slots
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Rate Adaptation: Packet Loss Recovery ==

If a node loses updated rate of loop i, it will continue to use latest
rate it receives until another updated rate of loop i is received

(Node |

Bl [ |- Blful [ |---Bf] [ |-- BT[] Blfl [
0 T 2T 3T 4T t

.f11| | |...lf11| | |...lf11| | |l | | |....f11| | |
0 T 2T 3T 4T t
O (Node 3
Node 2 1
.f11 .. - [{lf, o Bl J_I_I_Im
0 T 2T 3T 4T t

O The node recovers faster from packet loss if candidate rates share
more common slots

Candidate rate selection
O Candidate rates should be harmonic

10/23/18 13



\WER
\’-\,, 0
&/ %
= £

Cyber-Physical g

Self-triggered Control: Network Design o=

Network reconfiguration mechanism
O All nodes store global static schedule (max rate)

O Holistic controllers piggyback the predicted time till the next
transmission with actuation packet, and flood them in their assigned
slots

O Every node sets up timers for each flow

& &) & O W&

3T 1T 27 2T 3T 1T 5T 3T

v vy v vV v v

. f1 c '.f11 E '.f11 e . f1]faa] - .f11 f31]" "3
0 T 2T 3T 4T 1

All nodes sleep at inactive slots
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Self- Trlggered Control: Packet Loss Recovery o ===<=>

Problem: If a node fails to receive the predicted time till the next
transmission, it may wake up at the wrong time and become
unsynchronized with other nodes forever Node |

1i|' 21T ‘ 21T

1T 5T 5T 0 o Wzmam4!|j—|—|t
0lful | |---Tlfu| | |---2!J | I'-éTlfnl | |”;Tl—| X Last T Node 3
® i °
Node 2
f11 l l ...t

Solution: If a node loses inter-transmission time of a loop, it should
re-awake at the highest rate until another actuation packet of this
loop is received
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Wireless Cyber-Physical Simulator
(WCPS)

MATLAB/Simulink
TOSSIM
wcps.cse.wustl.edu

Li, B., et. al, realistic case studies of wireless
structural control. In ICCPS, 2013

Simulink Desktop Real-Time Controller Side
X isti u
Socket y,; State ;.| Holistic >R or Tn> Socket
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Serial
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Serial .
Interfacing Block
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Socket [«— Sensors [«— Plant [«— Actuators «— Socket
Simulink Desktop Real-Time Plant Side

WCPS-RT: Hybrid Simulations
real wireless networks + simulated
physical plants

capture wireless dynamics that are
hard to simulate accurately

leverage simulation support for
controllers and plants.
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Experimental Settings

» Physical plant and controller

O Up to five 4-state load

positioning plants

» 3- floor WSAN@WUSTL
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Normal Condition

Control performance metric: RA: Rate Adaptation
1 < ST: Self-Triggered control
MAE = —— ;) x(k) = xrep (k)L
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1 05 025 RA ST < 1 05 025 RA ST

RA and ST have similar control performance to fixed | Hz sampling

while incurring over 40% fewer energy consumption in the network!
ST is more aggressive in energy saving than RA
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Under Wireless Interference

Interference generated by WiFi
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1 05 025 RA ST

RA and ST have similar control performance to fixed |Hz sampling
Higher energy cost due to recovery, but still lower than | Hz sampling
ST consumes more energy than RA, due to packet loss recovery
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Under Physical Disturbance

Disturbance: constant bias of actuators
Performance over the entire experiments
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RA and ST have similar control performance to fixed 1Hz sampling
Energy consumption reduction of more than 30%
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Under Physical Disturbance

During the disturbance (120s — 180s)
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ST performs worse than RA under disturbance
Longer inter-transmission interval = slow responsive to disturbance
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Conclusion

Holistic control enhances efficiency and resiliency of wireless
control systems

Incorporate two efficient holistic control designs
3 Rate Adaptation (RA)
Q Self-Triggered control (ST)

Novel network reconfiguration mechanisms based on LVWB

Hybrid wireless control experiments based on WCPS-RT
O RA and ST offer advantages in control performance and efficiency

2 ST is less efficient than RA under network interference due to loss
recovery

O ST can be less responsive to physical disturbances due to predicted
transmission time
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