
Masters Project Report

Enhancing a Wireless Control Testbed

Guillaume VALENTIS
Washington University in St. Louis

Engineering, Robotics Major
Paris, France

guillaume.valentis
@wustl.edu

ABSTRACT
This semester, my work on this project is to enhance the
Wireless Sensor Network (WSN) testbed located in Jolley
Hall of Washington University. The testbed is working with
Time-Slotted Channel Hopping (TSCH) [1, 2] that can sup-
port a considerable number of nodes. The first part of my
work consisted in a literature review about wireless security
that can affect TSCH and WirelessHART systems. Many
kinds of attacks can affect such a system: from hacking to
physical tempering and stealing information. My main fo-
cus was the upgrade of the Operating System (OS) used on
the testbed: currently the testbed runs under TinyOS which
was last updated in 2012 with version 2.1.2 [3] and version
2.2 is still pending [4] and its last update was in 2014. The
new OS decided to be used is ContikiOS, an open source
embedded OS designed for low powered WSN. The project
I was assigned is to setup a TSCH network on the testbed
using ContikiOS.

Keywords
wsn; tsch; contikios

1. INTRODUCTION
Developments in WSN are revolutionizing our world. In

the past, everything had to be wired and that requirement
was inducing an increase in cost for materials (wires) and in-
stallation: more space to fit the wires and special installation
and maintenance system. However, during the last decade,
WSN started to develop and expand rapidly. New devices
were created and new microcontrollers were designed with
low power consumption and small sizes. With that, new OS
and ways to communicate wirelessly appeared. IPv6 got a
huge boost with the idea of giving each device its own IP ad-
dress on the Web. Thus, the IPv6 Low power Wireless Per-
sonal Area Networks (6LoWPAN) was developed and later
6TiSCH appeared in order to link IEEE802.15.4e TSCH ca-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN .

DOI: ˜

pabilities with 6LoWPAN.

ContikiOS [5, 6] is an open source OS designed for the
internet of things and for low cost and low powered mi-
crocontrollers. This OS supports a wide range of micro-
controllers and fully supports the new standards of IPv6
and IPv4, 6LoWPAN, Routing Protocol for Low-Power and
Lossy Networks (RPL), TSCH. The OS is also frequently
updated and maintained. ContikiOS is written in standard
C and all the applications and core functions are also in C.
ContikiOS also comes with an emulator (Cooja) to simulate
sensor networks before running it on the hardware.

The testbed in Jolley Hall includes 70 TelosB connected to
43 RaspberryPi distributed over 3 floors (3rd, 4th and 5th).
Each of the RaspberryPi are connected to a switch, under
the same subnet, which is connected to the WSN server. In
order to work with the testbed, we connect on the server
through ssh and from it we can directly burn the TelosB
designated by their id.

This report is divided in five parts besides the introduc-
tion: Section 2 presents the goals of the project, Section
3 is about my research on the main security issues of a
WSN, then Section 4 is about my work on ContikiOS and
the testbed, Section 5 describes the difficulties encountered
during my work and how they were solved. Finally, the con-
clusion and the future works are presented in Section 6.

2. GOALS
My goals for this project were to (1) list important secu-

rity issues related to WSN and WirelessHART systems; (2)
start working with ContikiOS on the testbed and see what
changes would need to be made in order to make the new
OS work; (3) implement a multi-hop communication sys-
tems using TSCH and ContikiOS on the testbed; (4) lastly
my work is also to provide enough documentation in order to
make this transition, from TinyOS to ContikiOS, as smooth
as possible.

3. SECURITY

3.1 Main Issues
WSN are usually more sensitive to attacks than wired sys-

tems. It is easier to have a handheld device and to eavesdrop
on the sensor network than to attach a physical device on a

~


communication cord.

There are six main threats that I was able to identify
during the time I was working on security [7]:

• Wormhole

• De-synchronization

• Jamming

• Traffic analysis

• Spoofing

• Exhaustion attack

3.2 Wormhole
Wormhole attacks can threaten the stability of the whole

system. If a node is inserted or a node is replaced with a
wormhole that drops the packets, valuable information can
be lost: no data update from a sensor to an actuator means
no control over the system.

3.3 De-synchronization
De-synchronization of a node leads to communication dis-

ruptions from this node and all other routes passing from
it. A re-synchronization needs some valuable time: either in
energy resources or in data transition that is lost.

3.4 Jamming
Jamming is one of the most difficult and unpredictable

threats for wireless networks. It leads to communication dis-
ruptions and also to de-synchronization. Many things can
jam unintentionally a signal such as Wi-Fi, phones, Blue-
tooth, magnetic fields, but also intentionally: malicious peo-
ple aiming to disrupt the system.

3.5 Traffic Analysis
In the legacy WirelessHART system NPDU header and

DLPDU are un-encrypted: it is possible to listen to the
traffic and learn about the routes used to transmit the data.
traffic analysis can also lead to finding the new devices added
to the network, the routines and the work peak hours.

3.6 Spoofing
The threat is the possibility to be able to join the network

using the well known key and advertise.

3.7 Exhaustion
Such as Spoofing getting the well known key and using

it to send fake packets to the neighboring nodes leads to an
unwanted use of resources. If this kind of attack is used with
many devices it can also be transformed to a DOS attack.

4. CONTIKIOS

4.1 Working Environment
To start developing for ContikiOS two choices are pre-

sented: downloading a ready to use virtual machine (Instant
Contiki) based on Ubuntu 14.04 or installing some packages
and cloning the git repository of ContikiOS.
For some platforms it is easier to choose the first option as
many tools might be difficult to get installed by someone

unfamiliar with it. In our case we are using TelosB motes
and we will just need a toolchain (gcc-msp430) to compile
the code and an application to burn the hardware: tos-bsl
(a TinyOS tool to burn the binary file on the hardware) as I
want to minimize the changes of tools of the current system
if possible.

4.2 First example
First step in this work was to see if the tools installed could

work properly on both the TelosB mote and the testbed. I
used the basic hello-world example given in ContikiOS. The
compilation of the example outputs a .sky file that can be
converted to a .ihex file which is the same format as the
TinyOS binary files. The example worked on both a single
TelosB mote connected to my computer and the testbed.
This test allowed me to be clear on the fact that, except for
the OS there wouldn’t be any significant change on the way
the other tools are used to work on the testbed.

4.3 Wireless communication and TSCH
On ContikiOS my work continued with testing TSCH

communication between some nodes. I used the Rime com-
munication stack and TSCH:

• Coordinator node #1

• Node #2 sending to node #1

• Node #3 sending to node #1

• Node #4 sending to node #2

While the coordinator was able to receive messages from
node #2 and #3, node 2 wasn’t getting any messages from
node # 4.

After this result, I didn’t go any further. Indeed, after
exchanging emails with Simon Duquennoy, who is working
on ContikiOS and TSCH at the Swedish Institute of Com-
puter Science (SICS), he told me that Rime is moving to
deprecation and is almost not used anymore on ContikiOS.

4.4 6TiSCH - RPL
ContikiOS offers a wide range of tools and a complete net

stack given that we understand the configuration and en-
able/disable what we need and don’t need.
I continued my work around TSCH, as my main goal was to
make it work properly, using 6TiSCH and RPL. I created a
sample code of a receiver and multiple sender nodes. I fixed
their IPv6 according to their node ID in order to differenti-
ate them more easily.

Here I am using the terms of receivers and transmitters,
but it just means that the receiver is not sending any mes-
sages, whereas all the transmitters are able to receive mes-
sages if they are recipients.

Before enabling TSCH I started experimenting just with
6LoWPAN and RPL to understand the configurations. Once
I was clear that multi-hop and data transmission was work-
ing, I enabled TSCH.

For the first experimentation I used 2 nodes: one receiver
and one transmitter.
Then I added three more transmitters to test the multi-hop



from the transmitter to the recipient.

All those experiments were first tested using the emulator
Cooja, where I placed different nodes with different spatial
configurations to test that my code was working. Then, in
the case of one receiver and one emitter, I did it with the
TelosB motes linked to my computer. The last test, with
multiple senders, was done on the testbed after confirming
with Cooja that it was working as expected.

Lastly both the 6LoWPAN - RPL and 6TiSCH - RPL ex-
periments were run on the testbed in a similar configuration
as the simulation. I was able to observe some dissimilarities
between the emulator and the testbed: First, some of the
packets sent from the more distant nodes were not able to
arrive at destination. Then, sometimes, the nodes weren’t
able to create a stable schedule for the TSCH to work, some
packets weren’t able to arrive at destination.
Indeed, the Cooja simulator was emulating an optimal en-
vironment for wireless communication; no interferences ex-
ternal sources.

5. DIFFICULTIES
The first time I tested TSCH, I worked with Rime because

RPL and 6TiSCH were too heavy to use for the ROM of the
TelosB: the ROM memory was overflown by 10KB.

But, as stated in Section 2, I had to implement a multi-
hop communication system using TSCH.
Simon Duquennoy tipped me to disable everything that I
didn’t need. Some features of ContikiOS are enabled by
default even if you don’t use them.
Features disabled at first and that can be easily found in the
configuration file:

• TCP

• UDP checksum

• Debug

• Logs (both from ContikiOS and TSCH)

Even with all those heavy features disabled, I was still short
of about 3.8KB of ROM.

I realized that ContikiOS was abusing the printf function
from the stdio library. One must know that this function
is about 4KB in ROM memory for microcontollers. On a
system like the TelosB that has 48KB of ROM, printf uses
about 8.3% of it. The 6TiSCH stack and RPL on ContikiOS
are already heavy and we also have to consider the core part
of the OS and our application.

To do that, I simply defined an empty printf and sprintf
in the header configuration file:

• #define printf(...)

• #define sprintf(...)

At that point, without this oversized function, I was able
to compile and run the application. I am still concerned
about the fact that the ROM memory might be used at

99% or more, which leaves small to no more memory avail-
able for a more complex application.

In order to be able to see what was happening I replaced
the printf with a simple lprint function that just outputs
the string given through the USB port. Adding a simple
and light integer to string function, I was able to send back
valuable information, such as the message id and the sender’s
id. And for all the other string operations I used the basic
string manipulation functions provided by the std libraries
(strcpy, strcat).

When I was able to compile and test the code on Cooja,
I noticed that the nodes couldn’t communicate with each
other. After some work, I found out that no schedule was
created before starting to send the messages. To solve the
issue I added a delay of 1 minute before the first message
transmission. After that, all the nodes were able to transmit
their messages to the receiver.

6. CONCLUSION
This is a very interesting Masters Project and my work

on improving the testbed was very tricky with lot of vari-
ous problems to solve. First it was about multi-hop issues.
Then, I had to face a ROM overflow problem before finally
being able to make the system work as it was expected.
During this semester, the work with wireless systems opened
to me new horizons. We are using more and more WSN and
we need a safe and reliable way to make them communicate
together without interfering with one another.

There is still a lot of work to do on what I started.
As I stated in Section 5, the memory of a TelosB is used at
more than 99%, which means that there is almost no mem-
ory left for future applications. It should be a necessity to
find other features to disable (like TCP) and also functions
to remove completely or replace, with a lighter version, from
the system (such as printf ).

Lastly, during my experimentations I was using the min-
imal schedule that was provided with the TSCH stack, and
I didn’t know how many nodes this schedule could support,
or how long it would take to obtain a stable schedule.

7. APPENDIX
The tutorials I made can be found on the CPSL Wiki

page: Tutorials.
You can download my work on the same page under the
Download section: Download.
Direct links:

• 6TiSCH application with one receiver and four trans-
mitters: 6TiSCH.tar.gz

• ContikiOS app used as a replacement for printf :
lprintsky.tar.gz

8. REFERENCES
[1] S. Duquennoy, B. Al Nahas, O. Landsiedel and T.

Watteyne, “Orchestra: Robust mesh networks through
autonomously scheduled tsch,” Proceedings of the
International Conference on Embedded Networked
Sensor Systems, Nov 2015.

http://cps.cse.wustl.edu/index.php/User:Guillaume#Tutorials
http://cps.cse.wustl.edu/index.php/User:Guillaume#Download
http://cps.cse.wustl.edu/index.php/File:6TiSCH_-_RPL_-_UDP_Transmitter_and_Receiver.tar.gz
http://cps.cse.wustl.edu/index.php/File:Lprintsky.tar.gz


[2] T. Watteyne, M. Palattella and L. Grieco, “Using ieee
802.15.4e time-slotted channel hopping (tsch) in the
internet of things (iot): Problem statement,” IETF,
https:// tools.ietf.org/ html/ rfc7554 , May 2015.

[3] TinyOS, “TinyOS Release 2.1.2,” 2014. http://tinyos.
stanford.edu/tinyos-wiki/index.php/Installing TinyOS.

[4] TinyOS, “TinyOS Release 2.2,” 2014.
https://github.com/tinyos/tinyos-main/milestone/1.

[5] A. Dunkels and B. Gronvall and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny
networked sensors,” 29th Annual IEEE International
Conference on Local Computer Networks, Nov 2004.

[6] ContikiOS, “ContikiOS web page,” 2017.
http://www.contiki-os.org/.

[7] Shahid Raza, “Secure Communication in
WirelessHART and its Integration with Legacy HART,”
2010. http://soda.swedishict.se/3799/1/T2010 01.pdf.

https://tools.ietf.org/html/rfc7554
http://tinyos.stanford.edu/tinyos-wiki/index.php/Installing_TinyOS
http://tinyos.stanford.edu/tinyos-wiki/index.php/Installing_TinyOS
https://github.com/tinyos/tinyos-main/milestone/1
http://www.contiki-os.org/
http://soda.swedishict.se/3799/1/T2010_01.pdf

	Introduction
	Goals
	Security
	Main Issues
	Wormhole
	De-synchronization
	Jamming
	Traffic Analysis
	Spoofing
	Exhaustion

	ContikiOS
	Working Environment
	First example
	Wireless communication and TSCH
	6TiSCH - RPL

	Difficulties
	Conclusion
	Appendix
	References

