
Exploring Sensor Networks using Mobile Agents

Daniel Massaguer†, Chien-Liang Fok‡, Nalini Venkatasubramanian†,
Gruia-Catalin Roman‡, and Chenyang Lu‡

†Donald Bren School of Information and Computer Science ‡Department of Computer Science and Engineering
University of California, Irvine Washington University in Saint Louis

Irvine, CA 92697, USA Saint Louis, MO, 63130, USA
{dmassagu, nalini}@uci.edu {liang, roman, lu}@cse.wustl.edu

ABSTRACT
Wireless sensor networks are often difficult to program and
unable to adapt to a changing environment. Mobile agent
middleware promises to address both concerns by providing
higher-level programming abstractions and the ability to in-
ject new agents into a preexisting network. The unique char-
acteristics of wireless sensor networks like resource scarcity
and emphasis on spatial locality require new algorithms for
controlling agent behavior. This paper presents a procedure
for one specific behavior: network exploration. Network
exploration is needed by many tasks ranging from simple
data collection to network health monitoring. Our proposed
procedure uses a genetic algorithm to determine the num-
ber of agents and their itineraries, followed by techniques
for in-network adaptation to unpredictable situations like
node failure. This paper presents a genetic algorithm and
its adaptation strategies. The procedure is evaluated using
a wireless sensor network consisting of 25 Mica2 motes run-
ning Agilla, a mobile agent middleware for wireless sensor
networks.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence.
Distributed Artificial Intelligence[Intelligent agents, Multia-
gent systems]

General Terms
Design, Algorithms, Experimentation

Keywords
Applications of autonomous agents and multi-agent systems,
mobile agents, (multi-)agent planning, performance evalua-
tion of agent systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

1. INTRODUCTION
Wireless sensor networks (WSNs) have attracted tremen-

dous interest in recent years as embedded systems, micro-
sensors, and batteries improve. A WSN consists of numer-
ous sensors (motes) embedded within the environment that
autonomously form wireless ad hoc networks. By increas-
ing the density and scale of traditional sensing systems, a
WSN enables users to gain unprecedented levels of context-
awareness. Current applications for WSNs include struc-
tural and habitat monitoring [6, 5] and fire fighting [2], etc.

Due to the nature of WSNs (nodes are faulty and resource-
constraint) developers are confronted with a bewildering set
of conflicting requirements, mostly related to software flexi-
bility and efficiency. For example, many WSNs are deployed
for long periods of time virtually guaranteeing that the user
requirements will change. Unfortunately, most WSNs run
statically installed software that is loaded prior to deploy-
ment, limiting network adaptivity to the tweaking of pre-
defined parameters. Another conflicting property stems from
the fact that WSNs are expected to cover a wide geographic
area servicing many users that need to run different pro-
grams.

Mobile agents offer a solution to the problems mentioned
above. Unlike traditional programs, mobile agents are capa-
ble of migrating across the network carrying code and state.
As they migrate, they perform application-specific tasks like
taking sensor readings, performing in-network data aggrega-
tion, and coordinating with other agents to achieve a com-
mon goal. This enables the development of fluid applications
capable of adapting to the intricacies of WSNs (see an ex-
ample of a fire tracking scenario in [2]). Mobile agents also
allow WSNs to be dynamically reprogrammed by enabling
users to inject new agents into the network and allowing old
ones to die. Furthermore, they allow multiple applications
to co-exist since multiple agents may reside on each node
(for an example, see [4]).

Before mobile agents can be effectively used in a WSN,
new algorithms must be created for controlling their behav-
ior. One topic of particular interest is network exploration.
The goal of network exploration is to visit every node and
to do so efficiently in terms of time and energy. This paper
addresses the specific issue of sensor network exploration
using multiple mobile agents. Network exploration is used
in many applications including data collection, network di-
agnostic and health monitoring, residual energy scanning,
topology discovery, and global reprogramming. Network ex-
ploration requires that every region of the sensor network be
visited at least once in a manner that is efficient in terms

  323



of energy consumption and latency. The order and number
of visitations does not matter, though redundant visitations
in general decrease efficiency and should be limited. The
goal of the network exploration procedure is to determine
the number of agents and each of their itineraries, and the
techniques for dealing with unexpected in-network circum-
stances, e.g., changes in topology.

2. PROBLEM DEFINITION
Using multiple mobile agents to explore a WSN offers the

benefits of flexibility, load distribution, and asynchronous
operation. However, since WSNs are large and resource-
constrained, these mobile agents must be designed to min-
imize energy utilization. Furthermore, application require-
ments dictate that real-time guarantees be met. This section
introduces the necessary notation, formulates a minimiza-
tion problem, and presents a solution.

2.1 WSN Model and Assumptions
A WSN consists of numerous nodes, each containing a set

of sensors, microcontroller, external memory, radio trans-
ceiver, and power source. Nodes can sense real-world phe-
nomena, perform local computations, store information, re-
ceive data, and transmit data. Receiving and transmitting
data costs more energy than performing local computations.
Moreover, we assume that the WSN is connected to the rest
of the world via a single base station called the collection
point. Finally, we assume that the amount of time an agent
spends processing data at each node and the time it takes to
migrate is predictable. In practice, such information may be
estimated based on empirical measurements (see section 4),
where the measured time per node includes the processing,
migration, and sleeping time. This knowledge is necessary
to ensure that the network is explored within a certain time.

2.2 Problem Formulation
Given a sensor network, Ω, with a single collection point,

the goal is to explore the entire network by visiting every
region within bounded time while minimizing energy con-
sumption. This can be done using multiple mobile agents
operating autonomously and in parallel following unique
routes. These routes must start and end at the collection
point.

Many applications do not need every node to be visited,
especially if the nodes are physically close. For example, it
may not be necessary to visit two nodes separated by just
one meter if the task is to determine the average temperature
along a path. To account for this, we introduce a density
variable d which specifies how many of the nodes within the
network need to be visited for the network to be considered
explored. Specifically, a network is considered explored if all
nodes m ∈ Ω have either been visited, or have a neighbor
within d hops that has been visited. Note that if d = 0, the
exploration problem reduces to one where every node needs
to be visited.

The time constraint t is specified by the maximum length
of a path, expressed as the number of nodes. We do not use
an actual time since the amount of time an agent spends
on each node, and the amount of time it takes an agent to
migrate, is predictable.

The cost of an agent, a, visiting a node, m, following a
certain path, p, is denoted Ca(m, p). It is defined in terms
of the weight of the agent, Wa(m, p), and the amount of

01: GeneticAlgorithm(Ω,d,t,Wa(m,p))
02: CreateInitialPopulation(N);
03: For generation=1 to MaxGenerations
04: Cross();
05: Mutate();
06: NaturalSelection();
07: AddNewIndividuals(I);
08: endFor
09: return AgentRoutes
10: endGeneticAlgorithm

Figure 1: The Genetic Algorithm

energy remaining on the node, Em, as follows:

Ca(m, p) =
Wa(m, p)

Em
(1)

Note that as the amount of energy available on a node
increases, the cost decreases and vice-versa. This is neces-
sary to balance the residual energy of the nodes and thereby
extend the lifetime of the network.

The weight of agent a, Wa(m, p), is a function that re-
turns the weight, in bytes, of agent a, when visiting node
m, following path p. The weight of an agent depends on the
size of its code and the amount of data that it carries. The
size of its code is fixed, whereas the size of the data varies
every hop and depends on what the application does upon
visiting each node.

Finally, let P be the set of all paths and Pm be the set of
paths that include node m, where Pm ⊆ P , we can formulate
the following minimization problem:

min

 X
m∈Ω

X
p∈Pm

Wa(m, p)

Em

!
(2)

such that ∀p ∈ P : |p| ≤ t and the WSN is covered with
density d.

3. A GENETIC ALGORITHM SOLUTION
Given the problem’s complexity and the size of the search

space(O(223t

)), a heuristic is necessary. In addition, the
sensor network’s topology may change due to nodes running
out of energy, desynchronizing, or being affected by external
forces (e.g., being moved by the wind). Continuously mon-
itoring the network topology is energy consuming. Thus,
in order to solve the formulated minimization problem de-
fined by equation 2, we propose a procedure containing two
phases: an initial route planning phase done by a genetic
algorithm and an in-network route adaptation phase that is
done by each agent autonomously after it has been injected
into the network.

Figure 1 contains the pseudo-code of the genetic algorithm
(GA). It takes as input the definition of a sensor network Ω
(i.e., the topology), the time constraint t (i.e., the maximum
number of nodes of the longest route), the density d, and the
specification of the varying size of the agents Wa(m, p). The
outcome is the number of agents and their routes, such that
the collection is achieved in an energy-aware manner and
within a time deadline. The GA can be divided into the fol-
lowing subparts: Generation of initial population, Crossing,
Mutation, Selection, and Adding of new individuals.

Generation of initial population and the addition

  324



of new individuals: An initial set, P , of solutions is gener-
ated. These solutions are a collection of random paths that
cover the network, and are generated by repeatedly calculat-
ing paths until the whole network, Ω, has been covered with
a density of d. Each path is selected by starting at the collec-
tion point and iteratively selecting a random neighbor until
the collection point is reached again. Only those neighbor-
ing nodes whose minimum distances (in number of hops) to
the collection point are not greater than the remaining time
will be selected. Since the time constraint is expressed as
the maximum number of nodes per path, comparing a nodes
distance to the collection point with the deadline is trivial.
All feasible neighbors are equally likely to be selected, and
the initial size of P , |P |, is a design parameter.

Crossing and Mutation: At every iteration, a new gen-
eration is added to P by selecting x individuals to be crossed.
Two individuals are crossed by taking a portion of each indi-
vidual’s math and combining them to form a new individual.
Depending of how those individuals are selected, and which
portion of their paths are crossed, new more efficient paths
may be formed. Mutation is done by crossing an individual
with itself.

Evaluation and Selection: All solutions are evaluated
by the function being minimized in 2. Upon evaluation, kn%
of the worst individuals are randomly selected and removed
from the population. Note that to avoid loosing the best so-
lutions generated, the five best solutions are never removed,
irrespective of kn.

3.1 In-Network Route Adaptation
Since the topology of WSNs changes, mobile agents must

adapt their routes during runtime. In particular, if an agent
cannot successfully migrate from the ith node of its route, to
the (i+1)th, it incrementally tries to migrate to the jth node
such that j > (i+1). Given a dense WSN, it is likely that at
least one of the nodes that follow the (i + 1)th node on the
agent itinerary will be in the ith node’s radio range, which
allows the agent to resume its exploration. Furthermore,
if the underlying mobile agent middleware supports multi-
hop routing (e.g., geographic routing) such as Agilla [3], this
solution is even more robust since an agent can migrate to
any node in the WSN regardless of distance.

4. EVALUATION
To evaluate our system, we deployed it on an a wireless

sensor network consisting of 25 Mica2 motes [1]running Ag-
illa [3], a mobile agent middleware. Having a real imple-
mentation allowed us to define realistic Wa(m, p) functions
and empirically determine a translation from the deadline
expressed in seconds to the maximum number of hops per
path.

We measured the actual amount of time agent migration
takes. We ran three different experiments with t = 13, 22,
and 26. The GA generated twenty-five initial solutions, exe-
cuted for five iterations, and added five new solutions every
iteration thereafter. For each experiment, we averaged the
three runs and plotted the percent of the network explored
versus time. The results are shown in Figure 2.

As expected, Figure 2 shows that the genetic algorithm
produces faster results with less variance when the maxi-
mum path length is more restrictive (shorter). With a time
constraint of t = 13, 22, and 26, mobile agents spent an av-
erage of 14s, 22.33s, and 24s in the WSN, respectively. The

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

Time (s)

%
 N

e
tw

o
rk

 E
x

p
lo

re
d

max path length 13

max path length 22

max path length 26

Figure 2: Percent Network Explored vs. Time

average time it takes to move an agent one hop is 1.233s.

5. CONCLUSIONS
Software for WSNs needs to be more flexible. Mobile

agents can provide this flexibility, but new algorithms are
needed to control agent behavior. This paper addresses net-
work exploration defined as visiting enough nodes in the
network to achieve a certain level of coverage. We present
a genetic algorithm that determines the number of agents
necessary to explore the network and their paths. It in-
cludes contingency plans to account for the dynamic nature
of WSNs. We show through experiments on a real WSN
that our procedure is effective and that it is able to explore
the network within the set deadline, while keeping energy
consumption in check.

6. ACKNOWLEDGMENT
This research has been supported in part by the Gener-

alitat de Catalunya, the Univ. of Girona, and the Univ. of
California through a Girona fellowship, and by the US Office
of Naval Research under MURI research contract N00014-
02-1-0715.

7. REFERENCES
[1] Crossbow Technology, Inc. MPR/MIB User’s Manual,

2004.

[2] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent
middleware for sensor networks: An application case
study. In Proc. of the 4th Int. Conf. on Information
Processing in Sensor Networks (IPSN’05), pages
382–387. IEEE, April 2005.

[3] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid
development and flexible deployment of adaptive
wireless sensor network applications. In Proceedings of
the 24th International Conference on Distributed
Computing Systems (ICDCS’05), pages 653–662. IEEE,
June 2005.

[4] G. Hackmann, C.-L. Fok, G.-C. Roman, C. Lu,
C. Zuver, K. English, and J. Meier. Agile cargo
tracking using mobile agents in wireless sensor
networks. In Proc. of the ACM SenSys, page 303, 2005.

[5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In Proc. of the 1st ACM Workshop on
Wireless Sensor Networks and Applications, pages
88–97, September 2002.

[6] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless
sensor network for structural monitoring. In Proc. of
the ACM SenSys, pages 13–24, 2004.

  325




