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ABSTRACT

Continued rapid progress in the development of embedded motion
sensing enables wearable devices that provide fundamental
advances in the capability to monitor and classify human motion,
detect movement disorders, and estimate energy expenditure.
With this progress, it is becoming possible to provide, for the first
time, evaluation of outcomes of rehabilitation interventions and
direct guidance for advancement of subject health, wellness, and
safety. The progress in motion classification relies on both the
performance of new sensor fusion methods that provide inference,
and the energy efficiency of energy-constrained monitoring
sensors. As will be described here, both of these objectives require
advances in the capability of detecting and classifying the location
and environmental context. Context directly enables both
enhanced motion classification accuracy and speed through
reduction in search space, and reduced energy demand through
context-aware optimization of sensor sampling and operation
schedules. There have been attempts to introduce context
awareness into activity monitoring with limited success, due to the
ambiguity in the definition of context, and the lack of a system
architecture that enables the adaptation of signal processing and
sensor fusion algorithms specific to the task of personalized
activity monitoring. In this paper we present a novel end-to-end
system that provides context guided personalized activity
classification. With a refined concept of context, the system
introduces interface models that feature a unique context
classification committee, the concept of context specific activity
classification, the ability to manage sensors given context, and the
ability to operate in real time through web services. We also
present an implementation that demonstrates accurate context
classification, accurate activity classification using context
specific models with improved accuracy and speed, and extended
operating life through sensor energy management.
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1. INTRODUCTION

The rapid advance in microelectronics has provided MEMS
inertial sensors, low power processors, and low cost monitoring
systems applicable to human motion classification. Many of the
most urgent problems in health and wellness promotion,
diagnostics and treatment of neurological condition and even
athletic performance advancement are now possible. The wireless
health community exploits this along with smartphone technology
for an integration of monitoring and in field guidance for both
advancing and evaluating treatment outcomes.
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Recently developed solutions monitor a subject’s physical
activity, for example walking gait speed monitoring for
recovering stroke patients in the field of wireless healthcare [1,2].
For many applications, there is also a need for personalized,
targeted monitoring for specific activities, in specific
environments. For example a stroke patient benefits from
monitoring of gait speed while in the hospital and then at home to
ensure that their mobility is sufficient to enable safe passage
through urban areas. Also, these subjects benefit from monitoring
and guidance for aerobic exercises while at home to maximize the
effectiveness of recovery routines [3].

A large body of work has focused on the accurate detection of
physical activities, using a diverse range of classification and
feature extraction techniques [1,2,4,5,9,10-12,31]. These methods
confront the challenge of classification of a specific, correct
motion among many possible at any observation time. As the
number of potential motion increases, classification reliability is
degraded. In addition, lacking any other source of guidance for
scheduling, these methods require continuous operation of all
platform components. This latter requirement limits operating life
of energy-constrained wireless platforms.

In fields including wireless sensor networking, pervasive
computing, and others, the concept of context-awareness has been
introduced with the objectives of improving human machine
interaction, and enabling low energy operation while retaining
system performance. Many architectures have been proposed to
bring personalization and adaptation to a system [6], and recent
attempts have been made to introduce context to activity
classification [7,8]. These systems experienced limited success
due to ambiguity in the definition of context, and a lack of an
appropriate system architecture that is specific to the task of
personalized activity monitoring.

In addressing the above-mentioned deficiencies, we propose a
novel end-to-end system that provides context guided
personalized activity classification. Our focus is on three major
areas: 1) The ability to accurately detect context with multiple
sensing modes; 2) The use of context to improve classification
accuracy, speed, and energy usage; and 3) The ability to target
specific physical activities of interest, given context. The
development of this system also addresses the problems
associated with the operation of experimental systems required for
system training and validation. In support of the three areas of
innovation above, this paper introduces some major contributions:
1) Context guided personalized activity classification; and 2) An
architecture for real time end-to-end rapid development and
operation.



2. RELATED WORK

Many investigations in medical science over the last decade have
demonstrated the critical benefits of activity monitoring for
applications ranging from health and wellness promotion to
disease treatment, to performance advancement and injury risk
reduction in athletics. One example is the use of motion and sound
data sources in an application that provides telemonitoring for
elderly individuals living independently [9]. Here, a method was
developed that can detect when a user requires attention (as a
result of a fall or long periods of inactivity). In another study,
accelerometer sensor data sources and machine learning
algorithms were applied for monitoring intervention effectiveness
of acute stroke patients [1]. The technology provides physicians
with the ability to directly measure a patient's activity level, even
after discharge. This improves on the surrogate laboratory
measurements, administered only in a clinical setting. An example
of applications in athletics were presented in [10], where multiple
accelerometers were used for ambulatory monitoring of elite
athletes in both competitive and training environments. For
swimmers, the characteristics of strokes can be captured and
analyzed. For rowers, the addition of an impeller combined with
accelerometer data was used to recover intra and inter stroke
phases for performance analysis. This system was used by
Australian Olympic athletes in training for competition in the
2004 Olympic Games.

Using sensors for activity monitoring has been studied
extensively. In [11], a system using iPhone and Nike+iPod sport
kit was proposed for classifying human activities. The activities
considered include running, walking, bicycling, and sitting. In [4],
a complex environment with many microphones, video sources
and other sensors was designed. The study attempted to accurately
track movements of arms and hands. Activities considered there
are bathing, dressing, toileting, eating, and others. Results
indicated that using one third of the 300 available sensors in the
specially designed lab, tasks can be detected with an accuracy of
90%. A specially designed glove was introduced for activity
classification [5]. The glove detects and records objects a user
touches using an RFID reader. In this system, all the objects being
monitored (such as utensils, toothbrushes, and appliances) need to
have RFID tags instrumented.

Most of the studies above are restricted in the number of activities
they can detect accurately. These systems are designed either for a
specific set of activities that may not be easily modified, or have a
high system installation cost with the requirement to modify
environments and also monitor subjects only when they are
present in these environments.

The recognition of user and environment context has been
identified as a primary capability for advancing the performance
and capability of human-computer interfaces in many fields [7].
Studies have emerged recently in wireless health that attempt to
combine context and activity classification. In [12], a multi-sensor
wearable system was proposed that enables a context that largely
consists of physical activities. There, 30 sensors were embedded
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into a garment, with multiple processing nodes responsible for
distributed processing of sensor data. This study treated physical
activities as contexts, and focused on the sensor fusion
development. A system for a context-aware mobile phone named
Sensay was developed [8]. This included context defined as a set
of user states (normal, idle, uninterruptable). By introducing light,
motion and microphone sensors, Sensay is able to detect these
contexts and manipulate ringer volume, vibration, and phone
alerts.

It is important to note that the definition of context has varied
between investigations. It is particularly important to define
context with the requirement that context states do not themselves
contain the very activities that are to be detected. Definition of
context for new development reported here will be included
below.

3. SYSTEM DESIGN
3.1 Context

When addressing context, many investigations use the important
definition by Dey [13]. While powerful, the definition of a context
that includes every characteristics of a given situation, in terms of
both the environment and the user, is very broad. Useful for some
applications, it is not suitable for leveraging context in monitoring
physical activities, as in many cases a context contains physical
activities that are underlying in the definition. There are a number
of alternative definitions available in the field of pervasive
computing, offering different selection of divisions, such as
external and internal contexts [14,15]. These definitions are
usually narrower, but still contain a mix of physical activities with
other environmental attributes.

In this study, a context is defined thusly: “a context is a subset of
all attributes that characterizes an environment or situation,
external to the user”. This definition clearly distinguishes
between the external environment, and the user's physical
activities. By means of this context, we will be able to provide a
guideline for deciding which attribute is associated with context
and which is associated with physical activity. For example, a
"meeting" environment is a context, and its characteristics may
involve certain sound profiles and a set of possible locations.
"Sitting in a meeting" in contrast is not a context, as it contains the
user's physical activity of "sitting".

3.2 System Model

We have developed and report here a system that is able to
provide context guided activity classification, with the capability
for real time online operation. To enable a context guided system,
we must provide ways of discovering a user's context and ways
for this information to be consumed by activity classification
systems. To enable guided training and online classification in
real time, we must also provide a client for the end user and a
corresponding web service to interface with the rest of the system.
Figure 1 depicts the architecture of this new system.

This architecture provides context detection and activity
classification, where the context information is utilized by an
activity classification system, along with activity sensor data. The
client application is used for collecting sensor data and labels
from a user, and also for displaying results. A corresponding web
service runs on the server, and acts as a gateway between the
client and the core system. This provides a means for the client to
transmit and access data through a network, in a structured
manner.
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Figure 1 System model

3.3 Modular Object Oriented Design

It is important to note that at each step in design and
implementation, individual subsystems are modeled as objects,
and the entire system is defined by a set of interfaces and
relationships. Each software interface is characterized by their
public methods, defined by functionality, expected inputs and
expected outputs. By implementing an interface, a class agrees to
provide all the methods of that interface [16]. In this way, each
subsystem is developed independently without the requirement to
reveal its specific implementations, but only that it implements the
required interface. This allows any part of our proposed system to
be overridden by custom realizations, allowing for rapid
prototyping and evaluation of various algorithms. Figure 2
demonstrates the interface model for our proposed core system.

As an example, consider the /ContextClassifierEx interface, which
covers the context classifier. Teams can develop classifiers

<<interface>>
IContextData

<<interface>>
|Annotation

+8tringf] tags()
+long timeStamp()

+Map(]<String, Object> getAliSensorData()(}
+Object getSensorData(String sensoriame)()

— ]

"
*

1

<<interface>>
|IContextFeatureExtractor

+IContextFeature[] getFeatures{IContextData)()

1

N

-getFeatures

<<interface=>>
IContextFeature
+List<Object> Features()
1 -train 0 p
~train, getContext
1

<<interface>>
IContextClassifierCommittee
+IContext getContext{IContextFeaturef])()
+void train{iContextFeature(], [Annotation(])()
+void registerCommitteeMember(iContextClassifierEx)()

independently and optimize them according to particular
applications. As long as the classifiers provide the getContext
method, they can be hot swapped into the system to adjust the
classification system behavior without affecting the overall
system.

3.4 Context Classification

Our definition of context can capture a large number of situations,
so that users with different objectives can define their own sets of
useful contexts. They can then identify required characteristics,
and select necessary sensors. This generalization makes
classification difficult, as we need to account for a diverse range
of data sources such as GPS coordinates, wireless information,
audio, and illumination level. For example, consider the following
datasets (Table 1), demonstrating the result of an experimental
system that combines both audio signal processing on sound
detected in an environment, along with the Media Access Control
(MAC) addresses associated with wireless access points detected
in the same environment. Here, three locations were used, and
MAC addresses and peak frequency of the audio power spectral
density (PSD) were recorded.

Table 1 Example datasets

Label Wireless MAC address Auc:io PSD peak
requency
A 000041 o 1e5) 201K
B 0000:40:86 56,7} 091Kz
c 00:06:156:98:] 20.19K 2

To separate labels A, B and C in this example, a common method
is to find thresholds that divide them, based on the MAC address
and PSD peak frequencies. It is clear that the audio peak
frequency data for environments can be assembled, and a distinct
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Figure 2 System interface model



separation between the labels can be found. The proper treatment
of MAC addresses is less clear. It is challenging to represent these
identifier values in a feature space, and to define a separation.
This difference in data type determines the suitability of various
classifiers. For example, classifiers based on SVM are not suitable
for treatment of MAC addresses, whereas a method such as kKNN
has been used successfully [17].

In order to detect context based on a variety of data sources, there
is a need to use multiple classifiers for different features. This
paper describes the development of a classification committee
consisting of n individual classifiers (Figure 3). The individual
classifiers are trained separately, and after training they can be
tested for individual accuracy. A voting weight (o) can be
determined for each classifier, proportional to the perceived
accuracy. When an unknown class is encountered, the committee
performs a linear combination of the individual classifiers, and the
context with the highest vote is the output.

ol N

Classifier 1 Classifier N

Figure 3 Classifier committee

This committee approach not only allows fusion of a number of
sensors with various data types, but also allows for adaptation of
context detection to individuals with varying habits. For the
former, it is easy to see that different classifiers can be selected to
compose the committee, depending on inputs. For the latter,
suppose a habitual individual exhibits strong patterns in time of
day relating to context. The weight of a classifier based on time of
day will be adjusted during training so that the habitual subject
would have a time classifier with higher vote weighting
(compared to a subject that is irregular).

3.5 Context Guided Personalized Activity

Classification

Once a context is obtained, the next step is to take advantage of
this information in activity classification. We introduce the
concept of a context guided classifier. These classifiers allow us
to have specifically optimized models that each focus on the
activities of interest, given context. Unlike conventional activity
monitoring, there is no single list of comprehensive activities that
needs to be built into a monolithic classifier. Instead, a basic set of
activities common across all contexts can be chosen, and this set
can then be extended or reduced should the need arise for a
particular context. To illustrate this concept, consider some usage
scenarios in Table 2.

Based on context information, the model selector would select an
appropriate scenario (model), and the activity classifier can then
make a classification based on the model. There are a number of
benefits from wusing this system. First, we can improve
classification accuracy and speed due to a simplification of feature
space. Then, the system allows scenarios (models) to be
determined by investigators, and a person's monitoring program
can be modified. For example, physicians may wish to monitor a
stroke inpatient's walking speed and also ensure they are
intermittently sitting/standing to alleviate deterioration in exercise

tolerance [3] (Scenario 3). Once discharged, physicians may then
wish to monitor the patient to make sure that recommended daily
activities are performed at home (Scenario 4). Another example is
where personal trainers can prescribe personalized training plans,
including activities and their duration and place (gym, home,
office). Here the activity monitoring system can inform the user of
his/her training progress. Finally, the system gives a user the
ability to control his/her privacy. Unlike most other monitoring
systems that are always on, a user can decide to only allow
monitoring under specific contexts, for specific activities.

Table 2 Example scenarios

Scenario 1 Scenario 2
Basic Set Cafeteria
e  Walking e  Walking
e  Sitting e  Sitting
e Standing e Standing
e  FEating
Scenario 3 Scenario 4
Stroke patient (inpatient) Stroke patient (rehabilitation)
e  Standing e Aerobic activity
e  Sitting e  Walking
e  Walking e  Walking Fast
e  Walking Slow e  Walking Slow
e  Walking Fast

3.6 Sensor Control and System Training

By having context and context guided scenarios, we can also
optimize sensor sampling rate and selectively enable or disable
sensors to reduce energy demand. For example, there are no upper
body motions from scenario 1 (Table 2), and the activities have a
low rate of change. This means that upper body sensors could be
disabled and sampling rate can be reduced on the lower body
sensors at no loss in system performance. The benefits of this are
an overall reduction of power, storage and communication usage.

Training starts with the user annotating two separate sets of data:
current context with associated timestamps; and physical activity
with associated timestamps. From here the training is split into
two parts. The context classifier requires context sensor data and
context label, while the activity classifier is trained using activity
labels and activity sensor data.

3.7 Client and Server

Figure 2 describes the core context system. This includes
description of the client and server architecture enabling real time
operation.

As a part of the complete system, the client application guides a
user in training mode, and then displays classification results in
online mode. An ideal candidate here is a mobile application
supported by a smartphone, as we will report in our experimental
implementation. This is preferred for two primary reasons: First,
mobile devices are pervasive, which makes the client accessible,
and we can leverage services off existing network infrastructure
that is available in the residential, workplace, and -clinic
environments, where the systems reported here are deployed;
Second, mobile devices are high performance, so they are able to
act not only as a user interface platform, but also as a wireless
sensor hub that can log, process and store data from the wearable
Sensors.

Complementary to the client, a web service is provided in this
system. The data payload expected is compact, as the complexity
is in processing of data (feature extraction and classification). This



also means that the web service interface is straightforward, as it
is only required to send and receive data. These characteristics
require only a straightforward web service architecture.

4. Experimental Implementation —
Personalized activity monitoring

In this section, we present an initial implementation of the
proposed system, and demonstrate many of the anticipated
benefits obtained.

4.1 Data Acquisition and Processing

4.1.1 Data Acquisition

The data recorded in this implementation are: 6 triaxial
accelerometer data sets along with activity labels (the sensors are
located on both wrists and ankles, and both sides of the waist);
wireless access point MAC addresses and signal strengths; audio
data time series; and finally context labels.

Data acquisition not only involves collecting sensor data and
corresponding annotations, but also includes post-processing
analysis, where all annotations must be matched with
corresponding data. Only then are they ready to be used by
classifiers. While many studies in the area of activity
classification provide detailed discussions on classifiers and
features, they do not address the variety of issues related to data
acquisition required for essential system training. Studies have
shown a number of factors affecting data acquisition accuracy,
ranging from end users being severely inconvenienced by the
equipment they have to carry, to users not being able to record
properly or meet the annotation demands using traditional pen and
paper approaches [18-20]. Many solutions also do not scale well
with increased subject numbers, and both lost and corrupted
datasets are common due to human error in labeling or inaccurate
recording. Another problem we observed in large measurement
campaigns is that many time references for events are recorded
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4.1.2 Context and Event Data Acquisition (CEDA)

System

We have designed and implemented a complete data acquisition
and processing system that includes an Android based client and a
centralized server-hosted labeling tool. Our system is developed
against Android SDK version 2.2 and the target device may be
any Android smartphone platform (we used an Archos 32 Internet
Tablet, which has support for wireless and audio recording). The
application follows a very simple flowchart with structured
transitions. This means that all possible user inputs are predefined,
thus lowering potential annotation errors.

The Context and Event Data Acquisition (CEDA) System is
displayed in Figure 4. During training, a user can indicate the start
of a context or activity by pressing "Start Context" or "Start State"
respectively (Figure 4a). Once pressed, the user is then prompted
by a selection list to choose a context or activity (Figure 4b and
4c).

4.1.3 CEDA Data Reader

To interpret the context information gathered from our Android
application, the data reader need to parse the data into a format
described by relevant interfaces, namely I[ContextData and
IAnnotation. This module can be deployed on the same mobile
device that runs the acquisition system for local processing, or it
can be deployed across network. For example, in a server client
scenario where the data logger simply transmits all data to a
server for parsing, we would have the CEDA data reader running
on a server, listening to traffic coming in from the network.

The IContextData type describes the context information
collected, and consists of an array of timestamps, sound objects,
and mapping of wireless MAC addresses and signal strengths.
This interface is intended for use with a feature extractor
implementing the [ContextFeatureExtractor interface. The
IAnnotation type simply describes the timestamp and label of
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Figure 4 Data logger screenshots

based on different clock resources, depending on where the
subject was at the time. These clock resources are mis-
synchronized by more than several minutes with each other, and
compared to the sensor system time-base. This phenomenon
dramatically reduces the effectiveness of the labeling process.

recorded physical activities. This is used for establishing valid
segments of accelerometer data to be used in the WHSFT module.

The CEDA data reader also serves as a filter to sanitize input.
Some sensor data are corrupted due to memory write errors or low
battery, and processing is done here to correct those (interpolation
from previous values for our implementation).



4.1.4 Data Labeling

Once the data are processed, they must be collated and labeled
according to user annotations. Our implementation includes a
system that when used in conjunction with the data logger, allows
us to move from a labeling process that is human intensive to one
that only requires humans for verification. Because the Android
application already records the start and end time of activities
(annotations.txt), we can overlay timestamps on top of sensor
data. Labeling from there is straightforward, and Figure 5 shows
the results (activities are identified between black and red lines).
Now human effort is only needed for quality checking. This
drastically reduces the amount of time and effort required for
organizing collected data.

Using this CEDA system, we have a robust means for supporting
large campaigns, where users will be given a kit containing an
Android (or other smartphone) application and sensors. Once a
user receives the kit, the Android system can guide the user
through training, and then provide individualized feedback.
Notifications can also be provided automatically by the same
system. This is a huge improvement over many current clinical
trials, where notifications come in the form of phone calls or text
messages [21]. For activities where the subjects cannot label data
themselves (e.g. while in sports), a third party can use CEDA
smartphone device to provide the labeling, and the same benefits
over traditional approaches apply.
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features uses a custom distance function that looks for the closest
k labels with overlapping MAC address sets, ranked by signal
strength.

AdaBoost is a type of boosting method [23]. It is a meta learner,
meaning that it is to be used in conjunction with a base learner.
The base learner can be any classifier, and is usually
straightforward to implement. They can also be very weak. In the
binary case, a base learner needs only to outperform chance
(50%). By forming multiple weak classifiers and weighting them
on their accuracy, AdaBoost can combine the ensemble into a
strong classifier. There are many papers describing the operation
and algorithms of a number of AdaBoost variants [23,24]. For our
implementation, we used the AdaBoostMH algorithm with a
decision stump base learner. AdaBoost.MH is an earlier variant,
and one of the most popular. It is an extension of the earliest
multiclass AdaBoost.M1 algorithm. A listing of the
AdaBoost.MH algorithm can be found in [24].

4.3 User Activity Classification Using

WHSFT

The Wireless Health Institute at UCLA has developed accurate
classification methods for user activities under diverse situations
and clinical settings [1,2,26]. In the process, we have developed a
sensor fusion and classification toolkit: Wireless Health Institute
Sensor Fusion Toolkit (WHSFT). It is a toolkit that provides a
multimodal hierarchical classification system based on the Naive
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Figure 5 Regions of annotated activities

4.2 Context Detection

Based on the discussion of features and the choice of classifiers,
there is a need to use separate classifiers to determine context
based on different features. In this implementation, the committee
is made up of 3 classifiers: kNN (k-nearest neighbors) with time
as a feature; kNN with wireless MAC address and signal strength
as features; and AdaBoost with audio peak frequency, peak
energy, average power and total energy as features. These features
are extracted from raw sensor data through a java program
implementing the /ContextFeatureExtractor interface.

The k-nearest-neighbors classifier is an instance based learner
[22]. It is a lazy learner in that no real work is done when the
training sequence is given during the training phase; they are
simply stored by the classifier. When an unknown class is
encountered, the classifier looks for the k nearest training samples
to the unknown class, and a decision is made based on majority
vote. Other than implementation simplicity, another major
advantage of kNN is the ability to handle nominal data through
custom designed distance functions. This is particularly important
for data types including, for example wireless MAC address
values. For our implementation, the kNN with time feature uses a
simple absolute distance function, and the kNN with wireless

Bayes classifier.

Starting with raw data from multiple sensors, the WHSFT finds
overlapping times for all the sensors, and combines streams of
data into a single structure. Features such as short time energy,
mean, and variance on three axes of the accelerometer are
computed from the combined data structure. There are a vast
number of diverse features providing freedom in selecting features
that best suit each application.

From the features, we can then build a hierarchical structure that
models the classification problem. This is a tree like structure that
describes the activities we are trying to classify. At each level of
the tree WHSFT uses a Naive Bayes classifier that separates
unknown data into one of the branches. Once we reach a leaf
node, a final classification is made. The personalization benefits
of the proposed architecture are realized through these
customizable hierarchical models. For example Figure 6 shows
the model for "Cafeteria" context described in Table 2.

4.4 \Web Services

The web service serves as a gateway between the client and server
for real time classification. It also implements the whole
automation process. While we only have the real time



classification system implemented, the training system can easily
be extended into the web service.
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Figure 6 Context guided model for cafeteria

When the system is online, raw data is first collected using the
CEDA data logger on the Android tablet. They are then passed to
the server by invoking a web service. After receiving this data, the
server will start the core classification system. Finally, both
context and activity classification results are combined along with
sensor policies, and returned to the Android tablet.

Following a RESTful web service architecture, we take advantage
of existing HTTP infrastructure [25]. This approach requires a
number of key components: a web server for providing the HTTP
infrastructure; a platform for developing the actual web service;
and a naming authority for redirecting requests to the web service.
For the server, an Apache web server stack is deployed. This
allowed us to develop the web services in PHP, and the naming
authority in htaccess.

In this implementation, the system is able to respond in real time
with both a context and an activity classification.

5. SYSTEM EVALUATION

5.1 Data Acquisition
Table 3 lists all models built for this experimental trial. Figure 6
and 7 shows two examples (Cafeteria and Bus) of the models
running in our activity classification system (WHSFT). It is noted
that due to our lack of wireless accelerometers, training and
testing were conducted offline.

lankle_stdevh

lwaist meanv Sit

Stand

Figure 7 Context guided model for bus

Data acquisition was performed as follows: three subjects carried
an Archos Internet Tablet and six Medical Daily Activity Wireless
Network (MDAWN) devices. The tablet supports our Android
client, and the MDAWN devices are placed on wrists, waist and
ankles. The MDAWNSs robustly provide trialaxial accelerometer
data [26]. Each subject was asked to record two sets of data. The
first set is for training the classifiers, where we performed each
activity for at least 5 minutes. Each subject then spent 30 minutes
in every context, and collected context data every 2 minutes. The
second set is for training purposes, and each subject spent over
eight hours across the contexts, collecting all data listed. Physical
activity recordings are marked by signatures indicated by shaking
of the right wrist every hour. This is used to confirm the
functionality of the CEDA automatic labeling system.

All of the MDAWNS and Archos tablets are synchronized to the
correct time by running a time synchronization tool for the
MDAWNsS, and setting the tablet's clock to match that of the PC
that ran the synchronization tool.

5.2 Results
5.2.1 Context Classifiers

Our new context guided classification method includes the
classifier committee system, and experimental results directly
demonstrate its effectiveness, in the presence of complex
classification challenges.

Table 4 summarizes the accuracies of the classifier committee and
the individual classifiers in the committee.

We see that wireless kNN performs with insufficient accuracy for
bus and outdoors. In the bus context case, the sensor system
detects a large number of wireless access points that have not
been incorporated into prior training due to the trajectory of the
bus. In the outdoor context case, the system tends to detect access
points that belong to one of the contexts at nearby indoor
locations. For example, walking near a building causes the context
to be classified as that of a context inside the building. Time KNN
is also not sufficiently accurate for a number of contexts, and this
is due to the varied nature when subjects visit these contexts. For
example, subjects visited the cafe and outside at different times of
the day. AdaBoost using sound features performed well for all
contexts, but there are instances where a bus driving nearby
causes a misclassification.

Table 4 Context classifiers accuracies

AdaBoost E\m Wll(';jllj sS Committee
Bus 80 59 29 80
Cafeteria 100 35 80 90
Class 80 87 89 95
Meeting 100 73 100 100
Outdoors 85 33 25 85
Home 100 100 100 100

Clearly, this experimental evaluation provides a classification
challenge for each individual classifier. However, as shown in
Table 4, by combining the best of all classifiers, our committee is
able to achieve high accuracy for all contexts.

5.2.2 Context guided Classification Accuracy

A critical benefit of context guided classification is a direct
improvement in accuracy for each classifier. This is also
demonstrated directly by experimental results here.




Table 3 Context guided models

Walking | Running | Walking Upstairs | Walking Downstairs | Sitting | Standing | Writing | Eating
Outdoors X X X X
Cafeteria X X X X
Home X X X X X
Class X X X
Meeting X X X X
Bus X X
Table 5 Context guided classification accuracy
Context Generic | Specific | Improve Context Generic | Specific | Improve
Cafeteria Meeting
Standing 96.91 98.97 2 Sitting 91.67 100 9
Walking 84.81 100 17 Walking 97.83 100 2
Eating 1 96.77 95.77x Writing 2.5 69.62 28.84x
Sitting 100 100 0 Standing 96.84 100 3
Outdoors Home
Walking 99.29 99.29 0 Sitting 100 100 0
Running 95.79 95.79 0 Standing 94.12 100 6
Upstairs 90.47 90.47 0 Walking 98.47 96.95 -1
Downstairs | 97.30 97.30 0 Upstairs 100 100 0
Downstairs | 96.61 96.61 0
Bus Class
Sitting 95.94 100 4 Walking 98.56 100 1
Standing 81.29 86.33 6 Sitting 87.33 71.04 -20
Writing 3.66 79.41 20.7x

The results are broken down by context, as shown in Table 5. The
"Generic" column shows results from a standard classification tree
using WHSFT, with all activities built in. The "Specific" column
shows accuracy from context guided classifiers. All values are in
percentage unless stated otherwise.

In nearly all examples, there is a substantial increase in
classification accuracy resulting from the introduction of context
guided classification, as a targeted model with fewer activities is
presented (as opposed to the conventional approach where the
classifier is presented with all possible activities for selection). In
the case of writing and eating, a large increase in accuracy can be
seen, from very limited accuracy for this complex upper body
activity to acceptable accuracy. Under the class context, there is a
decrease in accuracy for sitting, however, it is observed that
classification of writing is available with almost 80% accuracy.
The selection of new features and structures can further enhance
accuracy through convenient and straightforward development.

5.2.3 Context guided Classification Speed

Context guided classification offers a direct advance in
computational throughput that offers the possibility of real time
classification.

Table 6 shows the computational speed advance that has been
achieved. In all cases there is a significant increase in
classification speed. This indicates that context guided
classification can enable an online system capable of computing
subject state with the accuracy reported here in real time. Again,
"Generic" column shows the amount of time (in seconds) required
to perform a classification with the full model, and "Specific"
shows the amount of time (in seconds) required for the context
guided system. "Improve" shows the improvement factor (in
number of times).

Table 6 Speed increase of WHSFT-ca

Generic | Specific | Improve
Bus 0.119 0.013 9.2x
Café 0.120 0.044 2.7x
Class 0.122 0.039 3.1x
Meeting | 0.127 0.058 2.2x
Outside 0.128 0.033 3.9x
Home 0.119 0.050 2.4x

5.2.4 Context guided Classification Energy Usage
Context guided classifier now also offers the capability for
selecting optimal sensors and schedules for energy and operating
lifetime benefits. This also permits a minimum number of sensor
systems to be selected (for user convenience) while maintaining
classification accuracy.

Based on models constructed, we produced the sensor
requirement chart in Table 7. Blank cells indicate that a sensor can
be safely turned off without affecting the accuracy for a given
context. For example, in the case of "Bus" (Figure 8), only the left
waist sensor is required.

Table 7 Sensor requirement

Left | Right | Left | Right | Left | Right
Ankle | Ankle | Waist | Waist | Wrist | Wrist
Bus X
Cafeteria X X X X X
Class X X X
Meeting X X X
Outdoors X X X X
Home X X X




Using this chart, our sensor policy selector (ISensorPolicyMaker)
can determine which sensors can be shut down. To estimate the
potential for energy reduction, our analyses are directed to
determining the improvement in operation time by adopting
sensor activation and sampling schedules, as determined by
context. The analysis was performed based on recorded data, after
the completion of data collection as our sensor systems do not
allow real time scheduling. Results indicate the potential benefits
of context guided sensor energy management and now may be
applied to sensor systems that can be scheduled with real time
coordination.

To indicate the operating time improvement over a range of

subject behaviors, two cases were taken as examples, a graduate

student subject and a subject remaining in a residential household.

The typical profiles of their daily life are shown in Figure 8a, and

the total operating time using continuous sensor system usage, in

comparison to context guided sensor usage, is shown in Figure 8b.
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Figure 8 User profiles and their battery life comparison

6. CONCLUSION

Activity monitoring appears as a critical need and valuable source
of disease intervention and guidance in healthcare, personal health
and wellness promotion, workplace safety, and athletics. In this
paper, we have described the design, implementation, and
comprehensive evaluation of a novel end-to-end system that
introduces context into activity classification.

On the architecture level, we first presented a refined definition of
context, and a unique classification committee approach is
described for detecting context of diverse forms. We then
described how any current classification system can take

advantage of the new context information through the concept of a
context guided classifier. Finally, we described the potential for
real time classification through the use of web services that
exploit smartphone technology. The architecture also employs an
interface model, providing great flexibility in the rapid
implementation and integration of subsystems.

We also presented a realization of the above context guided
classification system, where an Android client application
addressed issues relating to robust data acquisition and large
campaign support. For the core system, AdaBoost, kNN and
hierarchical naive Bayes classifiers were all used for context
detection and activity classification, demonstrating the inherent
system flexibility. This has also demonstrated the important
capability our system provides in enabling a matching of classifier
systems to applications and the capability for the classification
committee to properly combine these for optimization of
classification accuracy.

Finally, through a series of experimental field evaluations
sampling each of the diverse context examples and activities in
multiple episodes by multiple subjects, the critical benefits of this
system were demonstrated. First, it was demonstrated that context
guided classification has enabled a substantial advance in
classification accuracy for many activities including upper body
motion. Second, it has been demonstrated that context guided
classification offers a computational throughput advance that may
be exploited for benefits including the support of real time, high
accuracy classification. Finally, it was also demonstrated that the
context classification capability can be applied to control the
activation and selection of sensors. This benefit will be exploited
in the immediate future to enable substantial operating lifetime
extension for critical applications.

Future work in context guided classification will be directed to
multiple areas. This includes the classification of complex motion
for subjects afflicted with disease conditions causing motion
disorders. This will then directly enable new rehabilitation
methods that are now possible as a result of in field, accurate
classification. The capabilities of the system will also enable a
new series of investigations directed to the detailed
characterization of classifier systems and their selection for
specific applications. New motion sensor systems now under
development will be included as well in the future. Finally, it is
planned that context guided classification will be provided as a
tool for the research community in collaborative development of
wireless health applications.
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