

Exploring Edge Computing for Multi-Tier Industrial Control

Yehan Ma¹, Chenyang Lu¹, Bruno Sinopoli², and Shen Zeng²

¹ Cyber-Physical Systems Laboratory, Department of Computer Science & Engineering
 ² Department of Electrical & Systems Engineering

Washington University in St.Louis

Cyber-Physical Systems Laboratory

Edge Computing for Industrial Control

Edge computing and wireless networks are not ready for control!

Two-Tier Control Architecture

Tradeoff between computing tiers
 Local control: network reliability
 Edge control: computation capacity

- Control performance depends on wireless reliability at run time
- Local control guarantees stability

System Model

3

Case Study: Tradeoff between Local and Edge Control

4 0.6 3 0.5 MAE (rad) 0.3 MAE (rad) 0.2 1 0.1 0 0 Edge Local Edge Local Reliable network Unreliable network

Control performance metric Mean absolute error: $MAE = \frac{1}{n+1} \sum_{k=0}^{n} |x(k) - x_{ref}(k)|$

- Edge may improve control performance
- Edge may also suffer from data loss
 Lose performance
 Lose stability
- Control performance depends on
 control policy
 network reliability
 physical plant states

- Dynamically switch between local and edge controllers
 - □ to optimize control performance

□ while guaranteeing stability

based on physical states and network reliability

Contributions

- > Switching Multi-tier Control (SMC): edge computing for control
- > Switching architecture
 - Optimal Platform Classifier: data-driven approaches to select optimal computing tiers
 - □ Stability Switch: extend Simplex to multi-tier architecture
- Hybrid simulator:WCPS-EC
 - □ real computing platforms + real/simulated wireless networks+ simulated plants
- Robotic control case study

Switching Logic of SMC

Select Optimal Controller through Data-driven Approach

Theoretical analyses of control performance over various control systems and network characteristics are challenging

- Overcome restrictions of analytical modeling
- Applicable to wide range of control techniques

Training Data for Optimal Platform Classifier

Training Data

- > Each data point represents a simulation run
- > Label each data point with the optimal controller
 - Uhen x_e and β are low, and α is high, edge control has smaller MAE
 - Training a model to classify optimal controller

Optimal Platform Classifier

- > When x_e and β are low, and α is high, OPC chooses edge control
- SVM model learns the non-linear boundary between the controllers
 - Training accuracy in 10-fold cross validation: 91.72%
 - □ Testing accuracy: 90.98%

WCPS-EC Wireless Cyber-Physical Simulator – Edge Computing

Evaluation of SMC

Evaluation of SMC

SMC provides over 30% and 40% control performance improvements compared with fixed local and edge control, respectively

- \succ When T_c is short, OPC is trained based on data in transient states only
- \succ When T_c is long, OPC cannot react to frequently changing network conditions in time.

Conclusions

- Edge computing leads to a two-tier control architecture
 Platforms with different computation capacities and communication reliability
- Switching Multi-tier Control (SMC) optimizes performance with stability guarantees
 □ Data-driven Optimal Performance Classifier → optimize control performance
 □ Stability Switch → guarantee system stability
- Case study: robotic control implemented in WCPS-EC
 - □ SMC outperforms local and edge control
 - □ while maintaining stability
 - under changing network reliability

Thanks. Questions?