Difference between revisions of "Seminar Spring 2022"

From Cyber-Physical Systems Laboratory
Jump to navigationJump to search
(Created page with "{| align="right" | __TOC__ |} * '''Instructor''': [http://www.cse.wustl.edu/~lu Prof. Chenyang Lu] * '''Semester''': '''Summer 2021''' * '''Time''': Thursday at 4pm-4:50pm ...")
 
Line 5: Line 5:
 
* '''Instructor''': [http://www.cse.wustl.edu/~lu Prof. Chenyang Lu]
 
* '''Instructor''': [http://www.cse.wustl.edu/~lu Prof. Chenyang Lu]
 
* '''Semester''': '''Summer 2021'''
 
* '''Semester''': '''Summer 2021'''
* '''Time''': Thursday at 4pm-4:50pm
+
* '''Time''': Wednesday at 1pm-2pm
* '''Location''': Virtual
+
* '''Location''': XXX
  
 
=== ---ML for Health ---===
 
 
=== ---Feb 04 ---===
 
Ruixuan
 
 
Guo, Gabriel, et al. "MSLife: Digital Behavioral Phenotyping of Multiple Sclerosis Symptoms in the Wild Using Wearables and Graph-Based Statistical Analysis." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5.4 (2021): 1-35.
 
[https://dl.acm.org/doi/10.1145/3494970]
 
 
=== ---Feb 11 ---===
 
Ziqi
 
 
Bica, Ioana, et al. "From real‐world patient data to individualized treatment effects using machine learning: current and future methods to address underlying challenges." Clinical Pharmacology & Therapeutics 109.1 (2021): 87-100. [https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1907]
 
 
=== ---Feb 18 ---===
 
Cancel
 
 
=== ---Feb 25 ---===
 
Sixie
 
 
Yang, Qian, et al. "Flop: Federated learning on medical datasets using partial networks." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021. [https://dl.acm.org/doi/pdf/10.1145/3447548.3467185]
 
 
=== ---Mar 04 ---===
 
Moran
 
 
Song, Sijie, et al. "An end-to-end spatial-temporal attention model for human action recognition from skeleton data." Proceedings of the AAAI conference on artificial intelligence. Vol. 31. No. 1. 2017. [https://ojs.aaai.org/index.php/AAAI/article/view/11212]
 
 
=== ---Mar 11 ---===
 
Jingwen
 
 
Park, Chunjong, et al. "Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection." Advances in Neural Information Processing Systems 34 (2021).
 
[https://papers.nips.cc/paper/2021/file/17e23e50bedc63b4095e3d8204ce063b-Paper.pdf]
 
 
=== ---Mar 18 ---===
 
Cancel
 
 
=== ---Mar 25 ---===
 
Cancel
 
 
=== ---Apr 01 ---===
 
Bing
 
 
Choi, Edward, et al. "GRAM: graph-based attention model for healthcare representation learning." Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017.[https://dl.acm.org/doi/pdf/10.1145/3097983.3098126]
 
 
Choi, Edward, et al. "Mime: Multilevel medical embedding of electronic health records for predictive healthcare." Advances in neural information processing systems 31 (2018).
 
[https://proceedings.neurips.cc/paper/2018/file/934b535800b1cba8f96a5d72f72f1611-Paper.pdf]
 
 
Choi, Edward, et al. "Learning the graphical structure of electronic health records with graph convolutional transformer." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 01. 2020. [https://arxiv.org/pdf/1906.04716.pdf]
 
 
=== ---Apr 08 ---===
 
Cancel
 
 
=== ---Apr 15 ---===
 
Hanyang
 
 
=== ---Apr 22 ---===
 
Ruiqi
 
 
Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flexible high-resolution object detection on edge devices with tunable latency. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom ’21). Association for Computing Machinery, New York, NY, USA, 559–572. DOI:https://doi.org/10.1145/3447993.3483274
 
  
  

Revision as of 10:17, 6 October 2022