Difference between revisions of "Seminar Spring 2024"
(2 intermediate revisions by the same user not shown) | |
(No difference)
|
Latest revision as of 15:01, 20 August 2024
- Theme: AI for Health
- Instructor: Prof. Chenyang Lu
- Semester: Spring 2024
- Time: Wednesday at 1 PM
- Location: McKelvey 1030
- Guidelines:
- Recommended sources: NeurIPS ([1]), ICML ([2]), AAAI ([3]), SIGKDD ([4]), IJCAI ([5]), IMWUT ([6]), HEALTH ([7]), Digital Medicine ([8]), Lancet Digital Health ([9]), NEJM AI ([10])
Presentation Schedule
---Jan 24 ---
Hangyue
Krishnamachari, Kiran, See-Kiong Ng, and Chuan-Sheng Foo. "Mitigating Real-World Distribution Shifts in the Fourier Domain." Transactions on Machine Learning Research (2023). [11]
---Jan 31 ---
Ruiqi
Faure, Gueter Josmy, Min-Hung Chen, and Shang-Hong Lai. "Holistic interaction transformer network for action detection." In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3340-3350. 2023. [12]
---Feb 07 ---
Jizhou
Parikh, Harsh, Quinn Lanners, Zade Akras, Sahar F. Zafar, M. Brandon Westover, Cynthia Rudin, and Alexander Volfovsky. "Estimating Trustworthy and Safe Optimal Treatment Regimes." arXiv preprint arXiv:2310.15333 (2023). [13]
---Feb 14 ---
Ben
M. Wornow, R. Thapa, E. Steinberg, J. A. Fries, and N. H. Shah, “EHRSHOT: An EHR Benchmark for Few-Shot Evaluation of Foundation Models.” arXiv, Dec. 11, 2023. doi: 10.48550/arXiv.2307.02028.
L. L. Guo et al., “A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records.” arXiv, Nov. 19, 2023. Available: http://arxiv.org/abs/2311.11483
---Feb 21 ---
Quan
Maus, N., Jones, H., Moore, J., Kusner, M. J., Bradshaw, J., & Gardner, J. (2022). Local latent space bayesian optimization over structured inputs. Advances in Neural Information Processing Systems, 35, 34505-34518. [14]
---Feb 28 ---
Ziqi
Oral exam practice
[1] Udandarao, Vishaal, et al. “COBRA: Contrastive Bi-Modal Representation Algorithm”, IJCAI (TUSION workshop) 2020. [15]
[2] Han Zongbo, et al. “Trusted Multi-View Classification.” International Conference on Learning Representations (ICLR). 2020. [16]
[3] Zhenbang Wu et al. “Multimodal Patient Representation Learning with Missing Modalities and Labels”. International Conference on Learning Representations(ICLR), 2024. [17]
---Mar 06 ---
Jiaming
Zhang, Nan, Yusen Zhang, Wu Guo, Prasenjit Mitra, and Rui Zhang. "FaMeSumm: Investigating and Improving Faithfulness of Medical Summarization." In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 10915-10931. 2023. [18]
---Mar 13 ---
Spring Break
---Mar 20 ---
Charles
Van Veen, Dave, Cara Van Uden, Louis Blankemeier, Jean-Benoit Delbrouck, Asad Aali, Christian Bluethgen, Anuj Pareek et al. "Adapted large language models can outperform medical experts in clinical text summarization." Nature Medicine (2024): 1-9. [19]
Liu, Nelson F., Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. "Lost in the Middle: How Language Models Use Long Contexts." Transactions of the Association for Computational Linguistics 12 (2024). [20]
---Mar 27 ---
Jingwen
Gouareb, Racha, Alban Bornet, Dimitrios Proios, Sónia Gonçalves Pereira, and Douglas Teodoro. "Detection of Patients at Risk of Multidrug-Resistant Enterobacteriaceae Infection Using Graph Neural Networks: A Retrospective Study." Health Data Science 3 (2023): 0099. [21]
---Apr 03 ---
Hanyang
Jin, Ming, et al. "Time-llm: Time series forecasting by reprogramming large language models." ICLR 2024.
---Apr 10 ---
Zebo
Lockwood, Owen, and Mei Si. "Reinforcement learning with quantum variational circuit." In Proceedings of the AAAI conference on artificial intelligence and interactive digital entertainment, vol. 16, no. 1, pp. 245-251. 2020. [22]
---Apr 17 ---
Claire
Prerna Chikersal, Afsaneh Doryab, Michael Tumminia, Daniella K. Villalba, Janine M. Dutcher, Xinwen Liu, Sheldon Cohen, Kasey G. Creswell, Jennifer Mankoff, J. David Creswell, Mayank Goel, and Anind K. Dey. 2021. Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection. ACM Trans. Comput.-Hum. Interact. 28, 1, Article 3 (February 2021), 41 pages. [23]
---Apr 24 ---
Daoyi
Tipirneni, Sindhu, and Chandan K. Reddy. "Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series." ACM Transactions on Knowledge Discovery from Data (TKDD) 16, no. 6 (2022): 1-17. [24]
Previous Semesters
- Fall 2023
- Spring 2023
- Fall 2022
- Summer 2022
- Spring 2022
- Fall 2021
- Summer 2021
- Spring 2021
- Fall 2020
- Summer 2020
- Spring 2020
- Fall 2019
- Summer 2019
- Spring 2019
- Fall 2018
- Summer 2018
- Spring 2018
- Fall 2017
- Summer 2017
- Spring 2017
- Fall 2016
- Summer 2016
- Spring 2016
- Fall 2015
- Summer 2015
- Spring 2015
- Fall 2014
- Summer 2014
- Spring 2014
- Fall 2013
- Summer 2013
- Spring 2013
- Fall 2012
- Summer 2012
- Spring 2012
- Fall 2011
- Summer 2011
- Spring 2011
- Fall 2010
- Spring 2010
- Fall 2009
- Summer 2009
- Spring 2009
- Fall 2008
- Summer 2008
- Spring 2008
- Fall 2007
- Summer 2007
- Spring 2007
- Fall 2006
- Spring 2006
- Fall 2005
- Spring 2005
- Fall 2004
- Spring 2004
- Fall 2003
- Spring 2003
- Fall 2002
- Spring 2002
- Fall 2001
- Spring 2001
- Fall 2000
- Spring 2000
- Fall 1998
- Spring 1998