Difference between revisions of "CSE 7300 Research Seminar"

From Cyber-Physical Systems Laboratory
Jump to navigationJump to search
 
(96 intermediate revisions by 6 users not shown)
Line 3: Line 3:
 
  |}
 
  |}
  
* '''Theme: AI and IoT for Medicine (AIM)'''
+
* '''Theme: AI for Health'''
 
* '''Instructor''': [http://www.cse.wustl.edu/~lu Prof. Chenyang Lu]
 
* '''Instructor''': [http://www.cse.wustl.edu/~lu Prof. Chenyang Lu]
* '''Semester''': '''Spring 2023'''
+
* '''Semester''': '''Fall 2024'''
* '''Time''': Wednesday at 11am-12pm
+
* '''Time''': Wednesday at 1 PM
 
* '''Location''': McKelvey 1030
 
* '''Location''': McKelvey 1030
 
* '''[http://www.cse.wustl.edu/~lu/talks/seminar_guidelines.pdf Guidelines]''':  
 
* '''[http://www.cse.wustl.edu/~lu/talks/seminar_guidelines.pdf Guidelines]''':  
* '''Recommended sources:''' NeurIPS ([http://nips.cc/]), ICML ([http://icml.cc/]), AAAI ([http://www.aaai.org/]), SIGKDD ([http://www.kdd.org/]), IJCAI ([http://www.ijcai.org/]), IMWUT ([http://dl.acm.org/journal/imwut]), HEALTH ([http://dl.acm.org/journal/health]), Digital Medicine ([http://www.nature.com/npjdigitalmed/]), Lancet Digital Health ([https://www.thelancet.com/journals/landig/issues#decade=loi_decade_201]), SenSys, MobiSys, MobiCom
+
* '''Recommended sources:''' NeurIPS ([http://nips.cc/]), ICML ([http://icml.cc/]), AAAI ([http://www.aaai.org/]), SIGKDD ([http://www.kdd.org/]), IJCAI ([http://www.ijcai.org/]), IMWUT ([http://dl.acm.org/journal/imwut]), HEALTH ([http://dl.acm.org/journal/health]), Digital Medicine ([http://www.nature.com/npjdigitalmed/]), Lancet Digital Health ([https://www.thelancet.com/journals/landig/issues#decade=loi_decade_201]), NEJM AI ([https://ai.nejm.org/])
  
 
==Presentation Schedule==
 
==Presentation Schedule==
=== ---Jan 25 ---===
 
Jaehwan
 
  
Jeong, Joo Seong, et al. "Band: coordinated multi-DNN inference on heterogeneous mobile processors." Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services. 2022.[https://dl.acm.org/doi/10.1145/3498361.3538948]
+
=== ---Sep 11 ---===
 
+
Ziqi
=== ---Feb 01 ---===
 
Hanyang
 
 
 
Contrastive multiview learning and its applications
 
  
Tian, Yonglong, Dilip Krishnan, and Phillip Isola. "Contrastive multiview coding." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16. Springer International Publishing, 2020. [https://arxiv.org/abs/1906.05849]
+
Gawlikowski, J., Tassi, C.R.N., Ali, M. et al. A survey of uncertainty in deep neural networks. Artif Intell Rev 56 (Suppl 1), 1513–1589 (2023). [https://doi.org/10.1007/s10462-023-10562-9]
  
Other related papers:
+
=== ---Sep 18 ---===
 +
Daoyi
  
InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training
+
Hüyük, A., Wei, Q., Curth, A. and van der Schaar, M., 2024. Defining Expertise: Applications to Treatment Effect Estimation. arXiv preprint arXiv:2403.00694. [https://openreview.net/pdf?id=1YPfmglNRU]
  
Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal Human Activity Recognition
+
=== ---Sep 25 ---===
 +
Jason
  
Multi-level Feature Learning for Contrastive Multi-view Clustering
+
Park, C., Awadalla, A., Kohno, T., & Patel, S. (2021). Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. W. Vaughan (Eds.), Advances in Neural Information Processing Systems (Vol. 34, pp. 3043–3056).
 +
[https://proceedings.neurips.cc/paper_files/paper/2021/file/17e23e50bedc63b4095e3d8204ce063b-Paper.pdf]
  
=== ---Feb 08 ---===
+
=== ---Oct 02 ---===
Ziqi
+
Ben
  
Mingcheng Chen. et al. Task-wise Split Gradient Boosting Trees for Multi-center Diabetes Prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’21). Association for Computing Machinery, New York, NY, USA, 2663–2673.[https://doi.org/10.1145/3447548.3467123]
+
Bick, A., Li, K.Y., Xing, E.P., Kolter, J.Z. and Gu, A., 2024. Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models. arXiv preprint arXiv:2408.10189. [https://arxiv.org/pdf/2408.10189]
  
=== ---Feb 15 ---===
+
Dao, T. and Gu, A., 2024. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. arXiv preprint arXiv:2405.21060. [https://arxiv.org/pdf/2405.21060]
Ruiqi
 
  
Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer; MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Long-Term Video Recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13587-13597 [https://ieeexplore.ieee.org/document/9878640]
+
=== ---Oct 09 ---===
 +
Claire
  
=== ---Feb 22 ---===
+
Qian Z, Zhang Y, Bica I, Wood A, van der Schaar M. Synctwin: Treatment effect estimation with longitudinal outcomes. Advances in Neural Information Processing Systems. 2021 Dec 6;34:3178-90. [https://proceedings.neurips.cc/paper_files/paper/2021/file/19485224d128528da1602ca47383f078-Paper.pdf]
Melanie
 
  
F. Cheng et al., "VBridge: Connecting the Dots Between Features and Data to Explain Healthcare Models," in IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 378-388, Jan. 2022, doi: 10.1109/TVCG.2021.3114836.
+
=== ---Oct 16 ---===
https://arxiv.org/pdf/2108.02550.pdf
+
Wenyu
  
=== ---Mar 01 ---===
+
Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. 2024. Faith and fate: limits of transformers on compositionality. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS '23). Curran Associates Inc., Red Hook, NY, USA, Article 3081, 70293–70332.
Jingwen
+
[https://dl.acm.org/doi/10.5555/3666122.3669203]
  
Malinin, Andrey, Liudmila Prokhorenkova, and Aleksei Ustimenko. “Uncertainty in Gradient Boosting via Ensembles.” International Conference on Learning Representations, 2021.
+
=== ---Oct 23 ---===
https://arxiv.org/abs/2006.10562
+
Di
  
=== ---Mar 08 ---===
+
Xu, Shusheng, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu. "Is dpo superior to ppo for llm alignment? a comprehensive study." arXiv preprint arXiv:2404.10719 (2024). [https://arxiv.org/pdf/2404.10719]
Andrew
 
  
Martinez, Natalia, Martin Bertran, and Guillermo Sapiro. "Minimax pareto fairness: A multi objective perspective." International Conference on Machine Learning. PMLR, 2020. [http://proceedings.mlr.press/v119/martinez20a/martinez20a.pdf].
+
=== ---Oct 30 ---===
 +
Behrooz
  
=== ---Mar 15 ---===
+
Renc, Pawel, Yugang Jia, Anthony E. Samir, Jaroslaw Was, Quanzheng Li, David W. Bates, and Arkadiusz Sitek. "Zero shot health trajectory prediction using transformer." NPJ Digital Medicine 7, no. 1 (2024): 256. [https://www.nature.com/articles/s41746-024-01235-0]
Spring Break
 
  
=== ---Mar 22 ---===
+
=== ---Nov 06 ---===
No seminar
+
Prince
  
=== ---Mar 29 ---===
+
Fan, Na, Zeyue Tian, Amartansh Dubey, Samruddhi Deshmukh, Ross Murch, and Qifeng Chen. "Multitarget Device-Free Localization via Cross-Domain Wi-Fi RSS Training Data and Attentional Prior Fusion." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, pp. 91-99. 2024. [https://ojs.aaai.org/index.php/AAAI/article/view/27759]
  
=== ---Apr 05 ---===
+
=== ---Nov 13 ---===
Ye
+
Prince
  
=== ---Apr 12 ---===
+
Fan, Na, Zeyue Tian, Amartansh Dubey, Samruddhi Deshmukh, Ross Murch, and Qifeng Chen. "Multitarget Device-Free Localization via Cross-Domain Wi-Fi RSS Training Data and Attentional Prior Fusion." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, pp. 91-99. 2024. [https://ojs.aaai.org/index.php/AAAI/article/view/27759]
Bing
 
  
=== ---Apr 19 ---===
+
=== ---Nov 20 ---===
 +
Peiqi
  
 +
Nguyen, Thao, Haotian Liu, Yuheng Li, Mu Cai, Utkarsh Ojha, and Yong Jae Lee. "Yo'LLaVA: Your Personalized Language and Vision Assistant." arXiv preprint arXiv:2406.09400 (2024). [https://arxiv.org/html/2406.09400v1]
  
=== ---Apr 26 ---===
+
=== ---Nov 27 ---===
 +
Thanksgiving
  
  
 
==Previous Semesters==
 
==Previous Semesters==
 +
* [[Seminar Spring 2024|Spring 2024]]
 +
* [[Seminar Fall 2023|Fall 2023]]
 +
* [[Seminar Spring 2023|Spring 2023]]
 
* [[Seminar Fall 2022|Fall 2022]]
 
* [[Seminar Fall 2022|Fall 2022]]
 
* [[Seminar Summer 2022|Summer 2022]]
 
* [[Seminar Summer 2022|Summer 2022]]

Latest revision as of 19:28, 20 November 2024

  • Theme: AI for Health
  • Instructor: Prof. Chenyang Lu
  • Semester: Fall 2024
  • Time: Wednesday at 1 PM
  • Location: McKelvey 1030
  • Guidelines:
  • Recommended sources: NeurIPS ([1]), ICML ([2]), AAAI ([3]), SIGKDD ([4]), IJCAI ([5]), IMWUT ([6]), HEALTH ([7]), Digital Medicine ([8]), Lancet Digital Health ([9]), NEJM AI ([10])

Presentation Schedule

---Sep 11 ---

Ziqi

Gawlikowski, J., Tassi, C.R.N., Ali, M. et al. A survey of uncertainty in deep neural networks. Artif Intell Rev 56 (Suppl 1), 1513–1589 (2023). [11]

---Sep 18 ---

Daoyi

Hüyük, A., Wei, Q., Curth, A. and van der Schaar, M., 2024. Defining Expertise: Applications to Treatment Effect Estimation. arXiv preprint arXiv:2403.00694. [12]

---Sep 25 ---

Jason

Park, C., Awadalla, A., Kohno, T., & Patel, S. (2021). Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. W. Vaughan (Eds.), Advances in Neural Information Processing Systems (Vol. 34, pp. 3043–3056). [13]

---Oct 02 ---

Ben

Bick, A., Li, K.Y., Xing, E.P., Kolter, J.Z. and Gu, A., 2024. Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models. arXiv preprint arXiv:2408.10189. [14]

Dao, T. and Gu, A., 2024. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. arXiv preprint arXiv:2405.21060. [15]

---Oct 09 ---

Claire

Qian Z, Zhang Y, Bica I, Wood A, van der Schaar M. Synctwin: Treatment effect estimation with longitudinal outcomes. Advances in Neural Information Processing Systems. 2021 Dec 6;34:3178-90. [16]

---Oct 16 ---

Wenyu

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. 2024. Faith and fate: limits of transformers on compositionality. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS '23). Curran Associates Inc., Red Hook, NY, USA, Article 3081, 70293–70332. [17]

---Oct 23 ---

Di

Xu, Shusheng, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu. "Is dpo superior to ppo for llm alignment? a comprehensive study." arXiv preprint arXiv:2404.10719 (2024). [18]

---Oct 30 ---

Behrooz

Renc, Pawel, Yugang Jia, Anthony E. Samir, Jaroslaw Was, Quanzheng Li, David W. Bates, and Arkadiusz Sitek. "Zero shot health trajectory prediction using transformer." NPJ Digital Medicine 7, no. 1 (2024): 256. [19]

---Nov 06 ---

Prince

Fan, Na, Zeyue Tian, Amartansh Dubey, Samruddhi Deshmukh, Ross Murch, and Qifeng Chen. "Multitarget Device-Free Localization via Cross-Domain Wi-Fi RSS Training Data and Attentional Prior Fusion." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, pp. 91-99. 2024. [20]

---Nov 13 ---

Prince

Fan, Na, Zeyue Tian, Amartansh Dubey, Samruddhi Deshmukh, Ross Murch, and Qifeng Chen. "Multitarget Device-Free Localization via Cross-Domain Wi-Fi RSS Training Data and Attentional Prior Fusion." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 1, pp. 91-99. 2024. [21]

---Nov 20 ---

Peiqi

Nguyen, Thao, Haotian Liu, Yuheng Li, Mu Cai, Utkarsh Ojha, and Yong Jae Lee. "Yo'LLaVA: Your Personalized Language and Vision Assistant." arXiv preprint arXiv:2406.09400 (2024). [22]

---Nov 27 ---

Thanksgiving


Previous Semesters

Previous Lab Meetings